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ABSTRACT

The one-dimensional magnetohydrodynamic equations are given in a
form suitable for computer solution for an arbitrary gas model. Evalua-
tion of certain parameters for the case of argon shows that the upper limit
on the ratio of the electric field strength to the magnetic field strength for
acceleration of a supersonic flow in a constant-area accelerator is strongly
influenced by non-ideal gas effects. .
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SECTION |
INTRODUCTION

The phenomena that occur in crossed-field accelerators are complex
and, at present, incompletely understood. It appears that two-dimensional
analyses are necessary in order to explain certain phenomena, Refer-
ence 1 is an example of such an analysis. In this particular case, it was
necessary to restrict the analysis to constant properties (weak interaction
theory). The results do shed some light on the phenomena, but it is clear
that the extension to the case in which the flow is accelerated is an ex-
tremely difficult task.

The one-dimensional approach (Ref. 2) can treat the case for which
there is significant energy addition, but as pointed out in Ref. 1, '"...it has
not been possible to apply these treatments to the correlation of experi-
mental data. ' Further, 'the one-dimensional approach is deficient largely
because of fringing electromagnetic fields and the Hall effect.' Since the
time these statements were written, experience has been gained which
indicates that if the Hall effect is either small because of high density, or
eliminated by the use of segmented electrodes, somewhat more reasonable
agreement between theory and experiment is obtained. In any event, one-
dimensional analysis will probably continue to play an important role in
preliminary analyses.

The particular set of one-dimensional equations given here, which of
course is not unique, was obtained for use in a computer program devel -
oped by Guy Gilley of the von Karman Gas Dynamics Facility (VKF)
Instrumentation Branch, AEDC. The program was originally written for
the use of argon in a magnetohydrodynamic (MHD)-augmented shock tube.
It is currently being rewritten to allow for an arbitrary gas by use of a
table of properties.

It was found that one facet of the experiments of Leonard (Ref. 3)
could be explained by non-ideal gas effects. In his experiments, accelera-
tion was obtained under conditions for which, according to the ideal gas
results of Ref, 2, deceleration would result. It was suggested by Dr,
L. E. Ring that the discrepancy could be explained by non-ideal gas effects.
Based on the MHD equations given here, and using properties based on a
simplified model for argon, this item is explained quantitatively.
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SECTION i
SOME THERMODYNAMIC RELATIONS FOR A NON-IDEAL GAS

The purpose of this section is to establish some thermodynamic rela-
tions which are necessary in the following sections.

The gas under consideration may be non-ideal in two ways. First,
the compressibility factor may be different from unity,

P = Z(P, T)pRT (1)
Second, enthalpy may be a function of pressure as well as temperature,

H = H(P, T) (2)

Throughout, pressure and temperature are taken as the independent
thermodynamic variables. An equally useful pair is density and tem-
perature. Pressure is used here in preference to density, because
certain relations are slightly simpler, although admittedly the advantage
is small.

The differential form of Eq. (1) is

P 4z de AT 3
== 7 * 0 + (3)
Two compressibility factor derivatives are defined by
- L 92
ZT = 7 arlp
(4)
- din 2
8ln T P
and
= . P 092
Zp =~ 3 Pl-,.
5
- _ 9inz )
3 ln. P T
so that
42 _ a7 _ dp.
z ='T 3 -%p G (6)
Using Eq. (6) in Eq. (3) gives
aF _ dp dT (7
(l+ZP)p—p+(1+ZT)—T—
Turning now to Eq. (2), it becomes in differential form
dH = CpdT + 9| 4p (8)

P | 1



A general thermodynamic relation is

gl _ Jd. _q 9 (1L
. "7V o (p)

P

from which

| _ _ Zr
Py p
Therefore,
dH = CpdT - Z7 4B

)

The internal energy, e, is given by
e=H-L&
p L
so that
dp P dp
de = dH - —p'— + P P
Using Eq. (11) gives
de = CpdT =~ (1 + ZT)

The specific heat at constant volume is

- e
c,-an
=Cp~ (1 +Zp) 4+
P T o
From Eq, (7)
6P| P lezg
so that

4
P

2
cv=cp-zﬂ_(l1_ﬂ')_

The ratio of specific heats,

¥ = Cp/cv

can then be found from
1. 0rze) zR
y 1+ Zp Cp

The speed of sound is found from

: .. OP
9 |s

+ £
P

dp

]
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(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17

{18)

(19)

(20)
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For constant entropy

aH = 4P s =0 .
. ( ) (21)
Using this in Eq. (11) gives
1+ 2Z7) d—; = CpdT  (dS = 0) (22)
This is then used in Egs. (7} and (19) to give
1+ 2p dP _ dp (23)
Y G
Therefore,
a__v P
R W S
(24)
_ Yy ZRT
T 1+ Zp

The effective ratio of specific heats is
]

g vas 2L (25)

P
Which from Eq. (24) is found to be
N ¢ {26)
Ye = T¥zp

An expression that is needed later is a relationship involving dH, dP,
and dp. Using dT from Eq. (7) in Eq. (11),

C’ 1+ ZP 5 dP CPT dp (27)
dH = [zn 1+ 2y ZT]T" 1+ Z7 p
From Eq. (19)
CP 1+ ZP _ y
ZR Tezr - yoi v In (28)
so that
y+Hp 4P C, T dp
M-~ — - T (29)
SECTION 1l

MHD ACCELERATOR EQUATIONS

The equations for the steady-state inviscid flow through a one-
dimensional crossed field with a low magnetic Reynolds number are (Ref. 2)%

*The energy equation of this reference has been generalized by
replacing CpdT by dH, and the prmtmg error has been corrected.
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pLA = m = constant (30)

du , dP _ 5 - BU
UGy * ax T oBIE - BL (31)

di duy) _ - N
U (Ex— + U dx)_ oE (E - BU) (32)

These equations express, respectively, the conservation of mass, momen-
tum, and energy. The nomenclature is conventional.

It is desired to solve for the acceleration, dU/dX, and the rate of
heating dH/dX. The pressure derivative in Eq, (31) is eliminated by using
Eq. (29), with Eq. (30) used to eliminate the density. The resulting equa-
tion may then be solved with Eq. (31) to give for the acceleration

|: y=1 C,T l:ldll y=1 €T 1 dA

1+ Zp 1+ZT_Urd_X=1+ZT1+ZT—E}—\-W+..

+ 22 (E - pyy X1 '—[V”‘T BU—E]
m 1+2r U] y-1

It may be shown from Eqs. (19), (25), and (26) that

2 y=1  CpT
@ T T+ip 1+ 27

so that
au

QRO PSR . (Y | S m Y
M~ 1) = F Shre g (E - BU)(BU - -

—1 E)+ U da
+ Z7 A dX (33)

The enthalpy equation is found to be

df _ oU _y+Zy (g _ _l+2p 1Yy _ U dA (34)
(W'I)F‘ P y,(1+zT1(E BU)[E(I y + Z M’) BU] A ax

Equations (33) and (34) are in a form that may be solved numerically
for given area distribution, A(X), electric field distribution, E(X), and
magnetic field distribution, B(X). FEach of the equations is integrated one
step forward to give new values of U and H. Equation (30) then gives a
new value for the density, and from the two state properties, p and H, the
necessary additional properties may be found. These required properties
arec, a, y, ye and Zp, *

¥If allowance is made for electrode spacing and the Hall effect, the
conductivity is also a function of the imposed magnetic field, B.
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For the case of an ideal gas, Z7 = 0, ye = ¥, and the above equations
reduce to

o1y U _ 7 g _ppy(py - 2oL ). U 9A
-1 .2 (E BL)(BD : B)+ = o2 (35)
and
* _ oy B _ ol (@ _ e 1\ _ gyl Ul o4
(M - 1) 4B _ ol (g BU)[E (1 YM,) Bu:l " (36)

which are the results of Resler and Sears (Ref. 2).

In comparing the expression given by Eqs. (33) and (34) with Eqgs.
(35) and (36), a number of differences are noted. The first is the presence
of an additional factor
‘ y+Zr
ve (L +Z7)
Calculations for a simplified argon model, described in the following
section, showed that the value of this parameter varied only slightly from
unity. TFor this case, this additional factor may be neglected. There is,
in addition, the grouping
y=1
y+ 2t
appearing in Eq. (33), and the grouping
[ + ZT
Yy + v
appearing in Fq. (34). The values of these parameters are strongly
dependent upon real gas effects. In addition, the parameter a2 implicit
in the Mach number is a non-ideal value.

Figure 1 illustrates one of the basic points revealed by the present
analysis. This particular figure is adapted from a similar one appearing
in Ref, 2 and shows the regions in the M-U plane for which flow accelera-
tion occurs in a constant area accelerator. The boundaries of these
regions may be obtained from Eq. (33). With regard to the Mach number,
the primary region of interest is for supersonic flow, since acceleration
from a subsonic flow to a supersonic flow is not likely (Ref. 2), and there-

fore significant heating would occur in accelerating a subsonic flow to high
velocities,

For supersonic Mach numbers, the condition on acceleration is that
the flow velocity must be less than

_E (37)
Us = 5
and greater than
U, = 2=l E
e y+Zr B (38)



AEDC-TR-65-185

{the term Zm does not appear in Ref. 2, since they consider only an ideal
T y y
gas). The upper velocity limit occurs since the current density

J = o(E ~ BU) (39)

would otherwise be negative. This velocity is also important in that it
represents the maximum velocity obtainable with an unsegmented electrode
accelerator. The second limit,

-1 E
u > ;Z+_Z? Y
occurs because otherwise there would be enough heating of the gas that the
resulting pressure rise would give a retarding force larger than the elec-
tromagnetic accelerating force. In view of the nature of the non-ideal gas
effects, it is to be expected that these effects would cause a decrease in
U1, since there are modes which absorb energy without a resulting pres-
sure rise.

The maximum velocity increase obtainable for an unsegmented elec-
trode accelerator in a supersonic stream is

- (39)

U, (40)

Uexh
Uinlat

max max

For an ideal gas, with y = 5/3, this gives a maximum velocity ratio of 2. 5.
Since greater velocity ratios than this have been obtained experimentally
(Refs. 3 and 4}, the non-ideal gas effects are quite noticeable. These
topics are discussed more completely in the next section after values are
obtained for some of the parameters.

SECTION IV
SINGLY IONIZING ARGON

Argon is a convenient gas for use in shock tubes, since it is readily
available, and the properties are comparatively well-known. In conjunc-
tion with MHD accelerator studies, argon has been used as a test gas with
seed (Ref. 5) and as a pure gas (Refs. 3 and 4). A number of theoretical
calculations of argon properties have been made (Refs. 6 through 9).

In order to study the effects of a non-ideal gas, a simplified thermo-
dynamic model is chosen here. The alternative approach is to generate
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the required quantitics by numerical differentiation and interpolation of
tabular data. This work is currently being done, but for the present
purposes, an approximate approach is adequate.

The simplified argon model used here is based upon the following
assumptions:

1. Single ionization only
2. Negligible electronic energies
3. Negligible interaction between particles, except at

collisions.

This last assumption means that both short range (second virial) and long
range (coulombic) forces are neglected. A comparison of the results
based on the simplified model with those from more exact calculations
indicates that the simplified model provides reasonable results for tem-
peratures below about 20, 000°K for pressures below about 100 atm.

With the above assumptions, the degree of ionization is found to be

given by
n KP Ei/k -4
a=——-‘l—=[1+ = e'T] {(41)
0. + oA T é
where Y
R \* Z4
K =
27m, A 2, YA (42)
Using the value of 12 for the ratio of partition functions, i, e.,
ZeZX g9
. Za
gives ]
K = 2.48 (°K) 4/(newt0n/m’)
L]
= 2,51 x 10° (°K) %/ atm
In addition,
Ei/k = 182,100°K

Figure 2 gives a comparison of the electron density obtained from
the simplified theory with that given by the more detailed calculations of
Ref, 6. It can be seen that reasonable agreement is obtained for tempera-
tures below about 20, 000°K. The range of validity of the simplified model
is somewhat greater than might be expected on the basis of the assumptions
made. For example, it can be seen from Fig. 3 that the assumption of a
constant value for the ratio of the internal partition functions is not very
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accurate. However, in the calculations of Ref. 6, a lowering of the
ionization potential {Ej) is also included. The reduction in the partition
functions (caused by truncation of the electronic series) and the reduc-
tion in ionization potential are partially compensating, as pointed out in
Ref. 10.

Having determined the degree of ionization, the compressibility
factor is obtained from
Z=1+a (43)

and the equation of state is

P = pZRT
where
R = 208 joule/kg °K
= 2239 (ft/sec)’/°K
The enthalpy is |
H = 25ZRT + (Z -~ 1)REy/k (44)

{the electronic energies are neglected).

In order to evaluate the compressibility derivatives, Eq. (41) is
rewritten

1 1 + .KP eEi/kT

a Ts/z
go that
-2 de| _ _X BT
[ ]
a’ 6P T T é
=L/l .1
P (a’ )
Therefore,
Zp = —g— e(l - a) (45)
In a similar manner
Zr = 5 all ~ a) (%+—ﬁ—‘f) (46)

The specific heat at constant pressure is evaluated from Eq. (44).
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= + 'R : ﬁl o, . '
Cp = 25 ZR (2.5 RT + RE,/k') BT‘p N
Using Eq. (46) gives .
\2
Cp=(1+a)R|::—+%a(1-a)'(-g-+*f%)] (47)

Using the above results in Eq. (19) gives

3 1 I-_l+-%(1—¢z)(—:-+-k51)]a

1
y 1+ af1-2a) ER e (48)
and from Eq. (26)
4 .
Ve = (1+a)(l—%a) (49)

Sufficient information has now been given to allow the pertinent param-
eters to be evaluated., ¥ Consider first the grouping of parameters

+ Zp
. Ye (1 + 27)

which appears as a multiplying factor in Eqs. (33) and {34). Calculations
covering the range of pressures from 0.1 to 1000 atm, with temperatures
up to 20, 000°K, showed that this parameter has a value between 0. 94 and
1.0. Therefore, the non-ideal gas effects caused by this particular group-
ing are essentially negligible.

The most important non-ideal gas effect is found in the lower limit
on velocity given by Eq. (38). Since normally the velocity is known, this
is equivalent to placing an upper limit on E/B, so that

(L) = L5
BU ma:— Y- 1

as given by Egq. (40). The value of this parameter is given in Fig. 4. This
figure shows that significant increases above the ideal gas value of 2.5 are
obtained, especially at the lower pressures.

Figure 5 gives the results in the form of the maximum value of E/B
allowable based on the conditions behind an incident argon shock. Also
shown is the range of inlet conditions of the experiments of Leonard (Ref. 3}

*The calculations were made with programs developed by John Duncan,
VKF Instrumentation and Ernest Burgess, Scientific Computing, ARO, Inc.

10
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which is the only source of experimental data available at present. * In
only one run (No. 76) was the actual E/B close to the calculated upper
limit for acceleration. There is nothing about the data for this particular
run to indicate any significant differences from the other runs. However,
there are difficulties in interpreting the data, since the measured quanti-
ties are shock speed and flow velocity behind the shock, and according to
the theory of Ref. 11, both heating and flow acceleration lead to an increase
in shock speed. One might expect intuitively that, with high heating, the
shock deceleration downstream would be greater. However, severe shock
deceleration occurs for all the cases, and no definite conclusion can be
drawn. Leonard attributes the slow-down to the large magnetic-field
gradient at the exit.
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